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We will prove that the number e = 2.71828 . . . is irrational.

Proof. From Taylor’s theorem, we know that for any positive integer n,
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Assume that e is rational, i.e., e = a/b for two positive integers a and b.

Choose

n > max(b, 3).
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which implies that
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= n! Rn. (1)

Since n > b, then n!a/b is an integer. Therefore n! Rn is also an integer

since all terms on the left of equation (1) are integers.

Since n > 3 and
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(n + 1)!
,

then
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3

n + 1
<

3

4
,

which is impossible if n! Rn is an integer. This gives us a contradiction,

therefore e is irrational. QED


